Spezialisierung Neuroscience and Neuroimaging
Familiarize yourself with fundamental concepts in neuroscience, like Functional Magnetic Resonance Imaging (fMRI), neurohacking (in R), and neuroimaging.
von
Was Sie lernen werden
Learn about fMRI data design, structure and acquisition.
Familiarize yourself with fMRI Artifacts and types of noise.
Learn how to read/write images of the brain in NIfTI format.
Learn about Magnetic Resonance Spectroscopy.
Kompetenzen, die Sie erwerben
Über dieses Spezialisierung
Praktisches Lernprojekt
Learners will go from fMRI data design, structure and acquisition to using the R programming language (https://cran.r-project.org/) and its associated package to perform manipulation, processing, and analysis of neuroimaging data. Specifically, you will learn how to read/write images of the brain in NIfTI format, visualize and explore these images, perform inhomogeneity correction, brain extraction, and image registration (within a subject and to a template).
Einige einschlägige Kenntnisse erforderlich.
Einige einschlägige Kenntnisse erforderlich.
Es gibt 4 Kurse in dieser Spezialisierung
Fundamental Neuroscience for Neuroimaging
Neuroimaging methods are used with increasing frequency in clinical practice and basic research. Designed for students and professionals, this course will introduce the basic principles of neuroimaging methods as applied to human subjects research and introduce the neuroscience concepts and terminology necessary for a basic understanding of neuroimaging applications. Topics include the history of neuroimaging, an introduction to neuroimaging physics and image formation, as well as an overview of different neuroimaging applications, including functional MRI, diffusion tensor imaging, magnetic resonance spectroscopy, perfusion imaging, and positron emission tomography imaging. Each will be reviewed in the context of their specific methods, source of signal, goals, and limitations. The course will also introduce basic neuroscience concepts necessary to understand the implementation of neuroimaging methods, including structural and functional human neuroanatomy, cognitive domains, and experimental design.
Principles of fMRI 1
Functional Magnetic Resonance Imaging (fMRI) is the most widely used technique for investigating the living, functioning human brain as people perform tasks and experience mental states. It is a convergence point for multidisciplinary work from many disciplines. Psychologists, statisticians, physicists, computer scientists, neuroscientists, medical researchers, behavioral scientists, engineers, public health researchers, biologists, and others are coming together to advance our understanding of the human mind and brain. This course covers the design, acquisition, and analysis of Functional Magnetic Resonance Imaging (fMRI) data, including psychological inference, MR Physics, K Space, experimental design, pre-processing of fMRI data, as well as Generalized Linear Models (GLM’s). A book related to the class can be found here: https://leanpub.com/principlesoffmri.
Principles of fMRI 2
Functional Magnetic Resonance Imaging (fMRI) is the most widely used technique for investigating the living, functioning human brain as people perform tasks and experience mental states. It is a convergence point for multidisciplinary work from many disciplines. Psychologists, statisticians, physicists, computer scientists, neuroscientists, medical researchers, behavioral scientists, engineers, public health researchers, biologists, and others are coming together to advance our understanding of the human mind and brain. This course covers the analysis of Functional Magnetic Resonance Imaging (fMRI) data. It is a continuation of the course “Principles of fMRI, Part 1”.
Introduction to Neurohacking In R
Neurohacking describes how to use the R programming language (https://cran.r-project.org/) and its associated package to perform manipulation, processing, and analysis of neuroimaging data. We focus on publicly-available structural magnetic resonance imaging (MRI). We discuss concepts such as inhomogeneity correction, image registration, and image visualization.
von

Johns Hopkins University
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.

University of Colorado Boulder
CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
Häufig gestellte Fragen
What is the refund policy?
Kann ich mich auch nur für einen Kurs anmelden?
Is financial aid available?
Kann ich kostenlos an diesem Kurs teilnehmen?
Findet dieser Kurs wirklich ausschließlich online statt? Muss ich zu irgendwelchen Sitzungen persönlich erscheinen?
Erhalte ich akademische Leistungspunkte für den Abschluss der Spezialisierung?
Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..