- Eigenvalues And Eigenvectors
- Principal Component Analysis (PCA)
- Multivariable Calculus
- Linear Algebra
- Basis (Linear Algebra)
- Transformation Matrix
- Linear Regression
- Vector Calculus
- Gradient Descent
- Dimensionality Reduction
- Python Programming
Spezialisierung Mathematik für maschinelles Lernen
Mathematik für maschinelles Lernen. Learn about the prerequisite mathematics for applications in data science and machine learning
von
Was Sie lernen werden
Implement mathematical concepts using real-world data
Derive PCA from a projection perspective
Understand how orthogonal projections work
Master PCA
Kompetenzen, die Sie erwerben
Über dieses Spezialisierung
Praktisches Lernprojekt
Through the assignments of this specialisation you will use the skills you have learned to produce mini-projects with Python on interactive notebooks, an easy to learn tool which will help you apply the knowledge to real world problems. For example, using linear algebra in order to calculate the page rank of a small simulated internet, applying multivariate calculus in order to train your own neural network, performing a non-linear least squares regression to fit a model to a data set, and using principal component analysis to determine the features of the MNIST digits data set.
Keine Vorkenntnisse erforderlich.
Keine Vorkenntnisse erforderlich.
So funktioniert die Spezialisierung
Kurse absolvieren
Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Lernender-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.
Praxisprojekt
Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.
Zertifikat erwerben
Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

Es gibt 3 Kurse in dieser Spezialisierung
Mathematics for Machine Learning: Linear Algebra
In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.
Mathematics for Machine Learning: Multivariate Calculus
This course offers a brief introduction to the multivariate calculus required to build many common machine learning techniques. We start at the very beginning with a refresher on the “rise over run” formulation of a slope, before converting this to the formal definition of the gradient of a function. We then start to build up a set of tools for making calculus easier and faster. Next, we learn how to calculate vectors that point up hill on multidimensional surfaces and even put this into action using an interactive game. We take a look at how we can use calculus to build approximations to functions, as well as helping us to quantify how accurate we should expect those approximations to be. We also spend some time talking about where calculus comes up in the training of neural networks, before finally showing you how it is applied in linear regression models. This course is intended to offer an intuitive understanding of calculus, as well as the language necessary to look concepts up yourselves when you get stuck. Hopefully, without going into too much detail, you’ll still come away with the confidence to dive into some more focused machine learning courses in future.
Mathematics for Machine Learning: PCA
This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction.
von

Imperial College London
Imperial College London is a world top ten university with an international reputation for excellence in science, engineering, medicine and business. located in the heart of London. Imperial is a multidisciplinary space for education, research, translation and commercialisation, harnessing science and innovation to tackle global challenges.
Häufig gestellte Fragen
Wie erfolgen Rückerstattungen?
Kann ich mich auch nur für einen Kurs anmelden?
Ist finanzielle Unterstützung möglich?
Kann ich kostenlos an diesem Kurs teilnehmen?
Findet dieser Kurs wirklich ausschließlich online statt? Muss ich zu irgendwelchen Sitzungen persönlich erscheinen?
Wie lange dauert es, die Spezialisierung abzuschließen?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Erhalte ich akademische Leistungspunkte für den Abschluss der Spezialisierung?
What will I be able to do upon completing the Specialization?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.