Über dieses Spezialisierung
52,914 kürzliche Aufrufe

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode

Ca. 2 Monate zum Abschließen

Empfohlen werden 11 Stunden/Woche

Englisch

Untertitel: Englisch

Was Sie lernen werden

  • Check

    Build a Reinforcement Learning system for sequential decision making.

  • Check

    Understand the space of RL algorithms (Temporal- Difference learning, Monte Carlo, Sarsa, Q-learning, Policy Gradients, Dyna, and more).

  • Check

    Understand how to formalize your task as a Reinforcement Learning problem, and how to begin implementing a solution.

  • Check

    Understand how RL fits under the broader umbrella of machine learning, and how it complements deep learning, supervised and unsupervised learning 

Kompetenzen, die Sie erwerben

Artificial Intelligence (AI)Machine LearningReinforcement LearningFunction ApproximationIntelligent Systems

Kurse, die komplett online stattfinden

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexibler Zeitplan

Festlegen und Einhalten flexibler Termine.

Stufe „Mittel“

Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode

Ca. 2 Monate zum Abschließen

Empfohlen werden 11 Stunden/Woche

Englisch

Untertitel: Englisch

So funktioniert die Spezialisierung

Kurse absolvieren

Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Kursteilnehmer-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.

Praxisprojekt

Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.

Zertifikat erwerben

Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

how it works

Es gibt 4 Kurse in dieser Spezialisierung

Kurs1

Fundamentals of Reinforcement Learning

4.8
465 Bewertungen
127 Bewertungen
Kurs2

Sample-based Learning Methods

4.8
200 Bewertungen
43 Bewertungen
Kurs3

Prediction and Control with Function Approximation

4.8
109 Bewertungen
15 Bewertungen
Kurs4

A Complete Reinforcement Learning System (Capstone)

4.6
65 Bewertungen
11 Bewertungen

Dozenten

Avatar

Martha White

Assistant Professor
Computing Science
Avatar

Adam White

Assistant Professor
Computing Science

Über University of Alberta

UAlberta is considered among the world’s leading public research- and teaching-intensive universities. As one of Canada’s top universities, we’re known for excellence across the humanities, sciences, creative arts, business, engineering and health sciences....

Über Alberta Machine Intelligence Institute

The Alberta Machine Intelligence Institute (Amii) is home to some of the world’s top talent in machine intelligence. We’re an Alberta-based research institute that pushes the bounds of academic knowledge and guides business understanding of artificial intelligence and machine learning....

Häufig gestellte Fragen

  • Ja! Um loszulegen, klicken Sie auf die Kurskarte, die Sie interessiert, und melden Sie sich an. Sie können sich anmelden und den Kurs absolvieren, um ein teilbares Zertifikat zu erwerben, oder Sie können als Gast teilnehmen, um die Kursmaterialien gratis einzusehen. Wenn Sie einen Kurs abonnieren, der Teil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung. Auf Ihrem Kursteilnehmer-Dashboard können Sie Ihren Fortschritt verfolgen.

  • Dieser Kurs findet ausschließlich online statt, Sie müssen also zu keiner Sitzung persönlich erscheinen. Sie können jederzeit und überall über das Netz oder Ihr Mobilgerät auf Ihre Vorträge, Lektüren und Aufgaben zugreifen.

  • It is recommended that learners take between 4-6 months to complete the specialization.

  • Recommended that learners have at least one year of undergraduate computer science or 2-3 years of professional experience in software development. Experience and comfort with programming in Python required. Must be comfortable converting algorithms and pseudocode into Python. Basic understanding of concepts from statistics (distributions, sampling, expected values), linear algebra (vectors and matrices), and calculus (computing derivatives)

  • Yes, it is recommended that courses are taken sequentially.

  • Learners that complete the specialization will earn a Coursera specialization certificate signed by the professors of record, not a University of Alberta credit.

  • By the end of this specialization, you will be able to"

    • Build a Reinforcement Learning system for sequential decision making.
    • Understand the space of RL algorithms (Temporal- Difference learning, Monte Carlo, Sarsa, Q-learning, Policy Gradients, Dyna, and more).
    • Understand how to formalize your task as a Reinforcement Learning problem, and how to begin implementing a solution.
    • Understand how RL fits under the broader umbrella of machine learning, and how it complements deep learning, supervised and unsupervised learning 

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..