- Motion Planning
- Particle Filter
- Matlab
- Robotics
- Quadcoper
- Automated Planning And Scheduling
- A* Search Algorithm
- Serial Line Internet Protocol (SLIP)
- Robot
- Computer Vision
- Estimation
- Random Sample Consensus (Ransac)
Spezialisierung Robotik
Learn the Building Blocks for a Career in Robotics. Gain experience programming robots to perform in situations and for use in crisis management
von
Was Sie lernen werden
Motion Planning
Matlab
Estimation
Kompetenzen, die Sie erwerben
Über dieses Spezialisierung
So funktioniert die Spezialisierung
Kurse absolvieren
Eine Coursera-Spezialisierung ist eine Reihe von Kursen, in denen Sie eine Kompetenz erwerben. Um zu beginnen, melden Sie sich direkt für die Spezialisierung an oder überprüfen Sie deren Kurse und wählen Sie denjenigen Kurs aus, mit dem Sie beginnen möchten. Wenn Sie einen Kurs abonnieren, der Bestandteil einer Spezialisierung ist, abonnieren Sie automatisch die gesamte Spezialisierung Es ist in Ordnung, wenn Sie nur einen Kurs absolvieren möchten — Sie können Ihren Lernprozess jederzeit unterbrechen oder Ihr Abonnement kündigen. Gehen Sie zu Ihrem Lernender-Dashboard, um Ihre Kursanmeldungen und Ihren Fortschritt zu verfolgen.
Praxisprojekt
Jede Spezialisierung umfasst ein Praxisprojekt. Sie müssen das Projekt/die Projekte erfolgreich abschließen, um die Spezialisierung abzuschließen und Ihr Zertifikat zu erwerben. Wenn die Spezialisierung einen separaten Kurs für das Praxisprojekt umfasst, müssen Sie zunächst alle anderen Kurse abschließen, bevor Sie damit beginnen können.
Zertifikat erwerben
Wenn Sie alle Kurse und das Praxisprojekt abgeschlossen haben, erhalten Sie ein Zertifikat, dass Sie für potenzielle Arbeitgeber und Ihr berufliches Netzwerk freigeben können.

Es gibt 6 Kurse in dieser Spezialisierung
Robotics: Aerial Robotics
How can we create agile micro aerial vehicles that are able to operate autonomously in cluttered indoor and outdoor environments? You will gain an introduction to the mechanics of flight and the design of quadrotor flying robots and will be able to develop dynamic models, derive controllers, and synthesize planners for operating in three dimensional environments. You will be exposed to the challenges of using noisy sensors for localization and maneuvering in complex, three-dimensional environments. Finally, you will gain insights through seeing real world examples of the possible applications and challenges for the rapidly-growing drone industry.
Robotics: Computational Motion Planning
Robotic systems typically include three components: a mechanism which is capable of exerting forces and torques on the environment, a perception system for sensing the world and a decision and control system which modulates the robot's behavior to achieve the desired ends. In this course we will consider the problem of how a robot decides what to do to achieve its goals. This problem is often referred to as Motion Planning and it has been formulated in various ways to model different situations. You will learn some of the most common approaches to addressing this problem including graph-based methods, randomized planners and artificial potential fields. Throughout the course, we will discuss the aspects of the problem that make planning challenging.
Robotics: Mobility
How can robots use their motors and sensors to move around in an unstructured environment? You will understand how to design robot bodies and behaviors that recruit limbs and more general appendages to apply physical forces that confer reliable mobility in a complex and dynamic world. We develop an approach to composing simple dynamical abstractions that partially automate the generation of complicated sensorimotor programs. Specific topics that will be covered include: mobility in animals and robots, kinematics and dynamics of legged machines, and design of dynamical behavior via energy landscapes.
Robotics: Perception
How can robots perceive the world and their own movements so that they accomplish navigation and manipulation tasks? In this module, we will study how images and videos acquired by cameras mounted on robots are transformed into representations like features and optical flow. Such 2D representations allow us then to extract 3D information about where the camera is and in which direction the robot moves. You will come to understand how grasping objects is facilitated by the computation of 3D posing of objects and navigation can be accomplished by visual odometry and landmark-based localization.
von

University of Pennsylvania
The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies.
Häufig gestellte Fragen
Kann ich mich auch nur für einen Kurs anmelden?
Ist finanzielle Unterstützung möglich?
Kann ich kostenlos an diesem Kurs teilnehmen?
Findet dieser Kurs wirklich ausschließlich online statt? Muss ich zu irgendwelchen Sitzungen persönlich erscheinen?
Erhalte ich akademische Leistungspunkte für den Abschluss der Spezialisierung?
How long does it take to complete the Introduction to Robotics Specialization?
Wie oft werden die einzelnen Kurse in der Spezialisierung angeboten?
What background knowledge is necessary?
Wie erfolgen Rückerstattungen?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Introduction to Robotics Specialization?
What will I be able to do upon completing the Introduction to Robotics Specialization?
What software will I need to complete the assignments?
Are there any resources I can consult to review prerequisites?
Haben Sie weitere Fragen? Besuchen Sie das Learner Help Center.