Chevron Left
Zurück zu Kausalschluss

Bewertung und Feedback des Lernenden für Kausalschluss von Columbia University

3.3
Sterne
69 Bewertungen

Über den Kurs

This course offers a rigorous mathematical survey of causal inference at the Master’s level. Inferences about causation are of great importance in science, medicine, policy, and business. This course provides an introduction to the statistical literature on causal inference that has emerged in the last 35-40 years and that has revolutionized the way in which statisticians and applied researchers in many disciplines use data to make inferences about causal relationships. We will study methods for collecting data to estimate causal relationships. Students will learn how to distinguish between relationships that are causal and non-causal; this is not always obvious. We shall then study and evaluate the various methods students can use — such as matching, sub-classification on the propensity score, inverse probability of treatment weighting, and machine learning — to estimate a variety of effects — such as the average treatment effect and the effect of treatment on the treated. At the end, we discuss methods for evaluating some of the assumptions we have made, and we offer a look forward to the extensions we take up in the sequel to this course....
Filtern nach:

1 - 25 von 27 Bewertungen für Kausalschluss

von Byron S

30. Okt. 2018

von Seo-Woo C

15. Mai 2019

von John S

3. Feb. 2020

von Max B

26. Nov. 2018

von Yurong J

19. Apr. 2020

von Agnes v B

4. Aug. 2019

von Raghav B

5. Jan. 2021

von James M

24. Jan. 2022

von Vladislav K

12. Dez. 2020

von Lucas B

6. Juni 2019

von Guannan Y

25. Aug. 2020

von Charles H

16. Dez. 2018

von Fabio M

29. März 2021

von Yanghao W

18. Apr. 2020

von Zerui Z

12. Dez. 2021

von Yizhi L

10. Apr. 2021

von Dale S

26. Apr. 2021

von Cecil C L

5. Mai 2021

von Harsha G H

21. März 2021

von Inspector T

6. Mai 2022

von Steve N

15. Mai 2020

von Vikram D

28. Aug. 2022

von Germán A

9. Jan. 2021

von Maxim V

8. Apr. 2022

von Pablo A G V

12. Juni 2020