Über diesen Kurs
109,535 recent views

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 36 Stunden zum Abschließen

Empfohlen: 9 hours/week...

Englisch

Untertitel: Englisch

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 36 Stunden zum Abschließen

Empfohlen: 9 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
8 Stunden zum Abschließen

Precalculus (Setting the scene)

This module begins by looking at the different kinds of numbers that fall on the real number line, decimal expansions and approximations, then continues with an exploration of manipulation of equations and inequalities, of sign diagrams and the use of the Cartesian plane.

...
10 Videos (Gesamt 109 min), 8 Lektüren, 9 Quiz
10 Videos
Real line, decimals and significant figures15m
The Theorem of Pythagoras and properties of the square root of 211m
Algebraic expressions, surds and approximations10m
Equations and inequalities17m
Sign diagrams, solution sets and intervals (Part 1)10m
Sign diagrams, solution sets and intervals (Part 2)10m
Coordinate systems8m
Distance and absolute value5m
Lines and circles in the plane14m
8 Lektüren
Notes: Real line, decimals and significant figures20m
Notes: The Theorem of Pythagoras and properties of the square root of 220m
Notes: Algebraic expressions, surds and approximations20m
Notes: Equations and inequalities20m
Notes: Sign diagrams, solution sets and intervals20m
Notes: Coordinate systems20m
Notes: Distance and absolute value20m
Notes: Lines and circles in the plane20m
9 praktische Übungen
Real line, decimals and significant figures20m
The Theorem of Pythagoras and properties of the square root of 220m
Algebraic expressions, surds and approximations20m
Equations and inequalities20m
Sign diagrams, solution sets and intervals20m
Coordinate systems20m
Distance and absolute value20m
Lines and circles in the plane20m
Module 1 quiz1h
Woche
2
11 Stunden zum Abschließen

Functions (Useful and important repertoire)

This module introduces the notion of a function which captures precisely ways in which different quantities or measurements are linked together. The module covers quadratic, cubic and general power and polynomial functions; exponential and logarithmic functions; and trigonometric functions related to the mathematics of periodic behaviour. We create new functions using composition and inversion and look at how to move backwards and forwards between quantities algebraically, as well as visually, with transformations in the xy-plane.

...
13 Videos (Gesamt 142 min), 12 Lektüren, 13 Quiz
13 Videos
Parabolas and quadratics11m
The quadratic formula10m
Functions as rules, with domain, range and graph11m
Polynomial and power functions13m
Composite functions7m
Inverse functions12m
The exponential function13m
The logarithmic function8m
Exponential growth and decay13m
Sine, cosine and tangent9m
The unit circle and trigonometry16m
Inverse circular functions11m
12 Lektüren
Notes: Parabolas and quadratics20m
Notes: The quadratic formula20m
Notes: Functions as rules, with domain, range and graph20m
Notes: Polynomial and power functions20m
Notes: Composite functions20m
Notes: Inverse functions20m
Notes: The exponential function20m
Notes: The logarithmic function15m
Notes: Exponential growth and decay20m
Notes: Sine, cosine and tangent20m
Notes: The unit circle and trigonometry20m
Notes: Inverse circular functions20m
13 praktische Übungen
Parabolas and quadratics20m
The quadratic formula20m
Functions as rules, with domain, range and graph20m
Polynomial and power functions20m
Composite functions20m
Inverse functions20m
The exponential function20m
The logarithmic function20m
Exponential growth and decay20m
Sine, cosine and tangent20m
The unit circle and trigonometry20m
Inverse circular functions20m
Module 2 quiz1h
Woche
3
10 Stunden zum Abschließen

Introducing the differential calculus

This module introduces techniques of differential calculus. We look at average rates of change which become instantaneous, as time intervals become vanishingly small, leading to the notion of a derivative. We then explore techniques involving differentials that exploit tangent lines. The module introduces Leibniz notation and shows how to use it to get information easily about the derivative of a function and how to apply it.

...
12 Videos (Gesamt 132 min), 10 Lektüren, 11 Quiz
12 Videos
Slopes and average rates of change10m
Displacement, velocity and acceleration11m
Tangent lines and secants10m
Different kinds of limits12m
Limit laws15m
Limits and continuity9m
The derivative as a limit10m
Finding derivatives from first principles14m
Leibniz notation14m
Differentials and applications (Part 1)13m
Differentials and applications (Part 2)7m
10 Lektüren
Notes: Slopes and average rates of change20m
Notes: Displacement, velocity and acceleration20m
Notes: Tangent lines and secants20m
Notes: Different kinds of limits20m
Notes: Limit laws20m
Notes: Limits and continuity20m
Notes: The derivative as a limit20m
Notes: Finding derivatives from first principles20m
Notes: Leibniz notation20m
Notes: Differentials and applications20m
11 praktische Übungen
Slopes and average rates of change20m
Displacement, velocity and acceleration20m
Tangent lines and secants20m
Different kinds of limits20m
Limit laws20m
Limits and continuity20m
The derivative as a limit20m
Finding derivatives from first principles20m
Leibniz notation20m
Differentials and applications20m
Module 3 quiz1h
Woche
4
12 Stunden zum Abschließen

Properties and applications of the derivative

This module continues the development of differential calculus by introducing the first and second derivatives of a function. We use sign diagrams of the first and second derivatives and from this, develop a systematic protocol for curve sketching. The module also introduces rules for finding derivatives of complicated functions built from simpler functions, using the Chain Rule, the Product Rule, and the Quotient Rule, and how to exploit information about the derivative to solve difficult optimisation problems.

...
14 Videos (Gesamt 155 min), 13 Lektüren, 14 Quiz
14 Videos
Increasing and decreasing functions11m
Sign diagrams12m
Maxima and minima12m
Concavity and inflections10m
Curve sketching16m
The Chain Rule9m
Applications of the Chain Rule14m
The Product Rule8m
Applications of the Product Rule9m
The Quotient Rule8m
Application of the Quotient Rule10m
Optimisation12m
The Second Derivative Test16m
13 Lektüren
Notes: Increasing and decreasing funtions20m
Notes: Sign diagrams20m
Notes: Maxima and minima20m
Notes: Concavity and inflections20m
Notes: Curve sketching20m
Notes: The Chain Rule20m
Notes: Applications of the Chain Rule20m
Notes: The Product Rule20m
Notes: Applications of the Product Rule20m
Notes: The Quotient Rule20m
Notes: Application of the Quotient Rule20m
Notes: Optimisation20m
Notes: The Second Derivative Test20m
14 praktische Übungen
Increasing and decreasing functions20m
Sign diagrams20m
Maxima and minima20m
Concavity and inflections20m
Curve sketching20m
The Chain Rule20m
Applications of the Chain Rule20m
The Product Rule20m
Applications of the Product Rule20m
The Quotient Rule20m
Application of the Quotient Rule20m
Optimisation20m
The Second Derivative Test20m
Module 4 quiz1h
4.9
35 BewertungenChevron Right

33%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

Top reviews from Introduction to Calculus

von MAMar 29th 2019

its a very interesting course and i really want to learn this so thanks coursera community and specially the speaker for providing such a wonderful and handy knowledge and notes.

von MBApr 26th 2019

its awesome course...\n\nMentor is skilled and explains everything clearly.\n\nBut if anybody has little bit pre-calculus knowledge it will be more helpful.

Dozent

Avatar

David Easdown

Associate Professor
Department of Mathematics and Statistics

Über The University of Sydney

The University of Sydney is one of the world’s leading comprehensive research and teaching universities, consistently ranked in the top 1 percent of universities in the world. In 2015, we were ranked 45 in the QS World University Rankings, and 100 percent of our research was rated at above, or well above, world standard in the Excellence in Research for Australia report....

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie ein Zertifikat erwerben, erhalten Sie Zugriff auf alle Kursmaterialien, einschließlich bewerteter Aufgaben. Nach Abschluss des Kurses wird Ihr elektronisches Zertifikat zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..