Über diesen Kurs
23,067 kürzliche Aufrufe

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 9 Stunden zum Abschließen

Empfohlen: 12 hours/week...

Englisch

Untertitel: Englisch

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 9 Stunden zum Abschließen

Empfohlen: 12 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
3 Stunden zum Abschließen

Introduction to Machine Learning Applications

12 Videos (Gesamt 44 min), 6 Lektüren, 2 Quiz
12 Videos
Instructor Introduction1m
Introduction to Course 12m
What is Artificial Intelligence and Machine Learning?5m
What about Data Science?3m
The Machine Learning Process4m
The Three Kinds of Machine Learning3m
Classification: What is it and how does it work?3m
Regression: Fitting lines and predicting numbers3m
Unsupervised Learning4m
Reinforcement Learning6m
Weekly Summary1m
6 Lektüren
What about Deep Learning? (supplemental)10m
Fooling Neural Networks (supplemental)10m
How to Curate A Ground Truth For Your Business Dataset (Required)10m
Learning From Multiple Annotators: A Survey (supplemental)10m
Inferring the Ground Truth Through Crowdsourcing (supplemental)10m
Semi Supervised Learning (required)10m
2 praktische Übungen
Concepts and Definitions20m
Identifying Machine Learning Techniques10m
Woche
2
1 Stunde zum Abschließen

Machine Learning in the Real World

8 Videos (Gesamt 34 min), 4 Lektüren, 1 Quiz
8 Videos
Features and transformations of raw data6m
Farmer Betty and Her Precision Agriculture Plans3m
What to consider when using your QuAM2m
Broad Examples Narrowed Down4m
Identify Business Evaluation4m
Everything is a Proxy4m
Weekly Summary2m
4 Lektüren
A Brief Introduction into Precision Agriculture10m
Farmer Betty Tried Unsupervised Learning (required)10m
Data is Central to Your ML Problem (required)10m
Martin Zinkevich's Rules for ML (supplemental)10m
1 praktische Übung
Machine Learning in the Real World Review
Woche
3
1 Stunde zum Abschließen

Learning Data

9 Videos (Gesamt 34 min), 2 Lektüren, 1 Quiz
9 Videos
How Much Data Do I Need?4m
Ethical Issues4m
Bias in Data Sources3m
Noise and Sources of Randomness5m
Image Classification Example3m
Data Cleaning: Everybody's favourite task4m
Why you need to set up a Data Pipeline4m
Weekly Summary1m
2 Lektüren
Data Protection Laws (required)10m
Government readings on data privacy (supplemental)10m
1 praktische Übung
Understanding Data for ML
Woche
4
1 Stunde zum Abschließen

Machine Learning Projects

7 Videos (Gesamt 35 min), 2 Lektüren, 1 Quiz
7 Videos
MLPL as experienced by Farmer Betty3m
Exploring the process of problem definition7m
Assessing your QuAM for use in your Business6m
Technically Assessing the Strength of your QuAM6m
Different Kinds of Wrong4m
Weekly Summary2m
2 Lektüren
Machine Learning Process Lifecycle Explained10m
Deep Learning for Identifying Metastatic Breast Cancer (advanced supplemental)10m
1 praktische Übung
Understanding Machine Learning Projects
4.7
28 BewertungenChevron Right

Top-Bewertungen von Introduction to Applied Machine Learning

von MMOct 29th 2019

I have really got benefit from this course as a beginner to ML, it gives me the best understanding of ML. I m looking forward to getting into it more efficiently with more practices.

von KSOct 14th 2019

This course will give the actual understanding especially focusing on different types of Machine learning with real examples. I'm so excited to learn more about it.

Dozent

Avatar

Anna Koop

Senior Scientific Advisor
Alberta Machine Intelligence Institute, University of Alberta

Über Alberta Machine Intelligence Institute

The Alberta Machine Intelligence Institute (Amii) is home to some of the world’s top talent in machine intelligence. We’re an Alberta-based research institute that pushes the bounds of academic knowledge and guides business understanding of artificial intelligence and machine learning....

Über den Spezialisierung Machine Learning: Algorithms in the Real World

This specialization is for professionals who have heard the buzz around machine learning and want to apply machine learning to data analysis and automation. Whether finance, medicine, engineering, business or other domains, this specialization will set you up to define, train, and maintain a successful machine learning application. After completing all four courses, you will have gone through the entire process of building a machine learning project. You will be able to clearly define a machine learning problem, identify appropriate data, train a classification algorithm, improve your results, and deploy it in the real world. You will also be able to anticipate and mitigate common pitfalls in applied machine learning....
Machine Learning: Algorithms in the Real World

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..