Über diesen Kurs
27,201 recent views

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Fortgeschritten“

Ca. 17 Stunden zum Abschließen

Empfohlen: 11 hours/week...

Englisch

Untertitel: Englisch

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Fortgeschritten“

Ca. 17 Stunden zum Abschließen

Empfohlen: 11 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
1 Stunde zum Abschließen

Welcome to Course 4: Motion Planning for Self-Driving Cars

This module introduces the motion planning course, as well as some supplementary materials.

...
4 Videos (Gesamt 18 min), 3 Lektüren
4 Videos
Welcome to the Course3m
Meet the Instructor, Steven Waslander5m
Meet the Instructor, Jonathan Kelly2m
3 Lektüren
Course Readings10m
How to Use Discussion Forums15m
How to Use Supplementary Readings in This Course15m
2 Stunden zum Abschließen

Module 1: The Planning Problem

This module introduces the richness and challenges of the self-driving motion planning problem, demonstrating a working example that will be built toward throughout this course. The focus will be on defining the primary scenarios encountered in driving, types of loss functions and constraints that affect planning, as well as a common decomposition of the planning problem into behaviour and trajectory planning subproblems. This module introduces a generic, hierarchical motion planning optimization formulation that is further expanded and implemented throughout the subsequent modules.

...
4 Videos (Gesamt 54 min), 1 Lektüre, 1 Quiz
4 Videos
Lesson 2: Motion Planning Constraints13m
Lesson 3: Objective Functions for Autonomous Driving9m
Lesson 4: Hierarchical Motion Planning17m
1 Lektüre
Module 1 Supplementary Reading10m
1 praktische Übung
Module 1 Graded Quiz50m
Woche
2
6 Stunden zum Abschließen

Module 2: Mapping for Planning

The occupancy grid is a discretization of space into fixed-sized cells, each of which contains a probability that it is occupied. It is a basic data structure used throughout robotics and an alternative to storing full point clouds. This module introduces the occupancy grid and reviews the space and computation requirements of the data structure. In many cases, a 2D occupancy grid is sufficient; learners will examine ways to efficiently compress and filter 3D LIDAR scans to form 2D maps.

...
5 Videos (Gesamt 50 min), 1 Lektüre, 1 Quiz
5 Videos
Lesson 2: Populating Occupancy Grids from LIDAR Scan Data (Part 1)9m
Lesson 2: Populating Occupancy Grids from LIDAR Scan Data (Part 2)9m
Lesson 3: Occupancy Grid Updates for Self-Driving Cars9m
Lesson 4: High Definition Road Maps11m
1 Lektüre
Module 2 Supplementary Reading1h
Woche
3
4 Stunden zum Abschließen

Module 3: Mission Planning in Driving Environments

This module develops the concepts of shortest path search on graphs in order to find a sequence of road segments in a driving map that will navigate a vehicle from a current location to a destination. The modules covers the definition of a roadmap graph with road segments, intersections and travel times, and presents Dijkstra’s and A* search for identification of the shortest path across the road network.

...
3 Videos (Gesamt 35 min), 1 Lektüre, 1 Quiz
3 Videos
Lesson 2: Dijkstra's Shortest Path Search10m
Lesson 3: A* Shortest Path Search13m
1 Lektüre
Module 3 Supplementary Reading1h
1 praktische Übung
Module 3 Graded Quiz50m
Woche
4
2 Stunden zum Abschließen

Module 4: Dynamic Object Interactions

This module introduces dynamic obstacles into the behaviour planning problem, and presents learners with the tools to assess the time to collision of vehicles and pedestrians in the environment.

...
3 Videos (Gesamt 36 min), 1 Lektüre, 1 Quiz
3 Videos
Lesson 2: Map-Aware Motion Prediction11m
Lesson 3: Time to Collision12m
1 Lektüre
Module 4 Supplementary Reading1h
1 praktische Übung
Module 4 Graded Quiz50m

Dozenten

Avatar

Steven Waslander

Associate Professor
Aerospace Studies
Avatar

Jonathan Kelly

Assistant Professor
Aerospace Studies

Über University of Toronto

Established in 1827, the University of Toronto is one of the world’s leading universities, renowned for its excellence in teaching, research, innovation and entrepreneurship, as well as its impact on economic prosperity and social well-being around the globe. ...

Über die Spezialisierung Self-Driving Cars

Be at the forefront of the autonomous driving industry. With market researchers predicting a $42-billion market and more than 20 million self-driving cars on the road by 2025, the next big job boom is right around the corner. This Specialization gives you a comprehensive understanding of state-of-the-art engineering practices used in the self-driving car industry. You'll get to interact with real data sets from an autonomous vehicle (AV)―all through hands-on projects using the open source simulator CARLA. Throughout your courses, you’ll hear from industry experts who work at companies like Oxbotica and Zoox as they share insights about autonomous technology and how that is powering job growth within the field. You’ll learn from a highly realistic driving environment that features 3D pedestrian modelling and environmental conditions. When you complete the Specialization successfully, you’ll be able to build your own self-driving software stack and be ready to apply for jobs in the autonomous vehicle industry. It is recommended that you have some background in linear algebra, probability, statistics, calculus, physics, control theory, and Python programming. You will need these specifications in order to effectively run the CARLA simulator: Windows 7 64-bit (or later) or Ubuntu 16.04 (or later), Quad-core Intel or AMD processor (2.5 GHz or faster), NVIDIA GeForce 470 GTX or AMD Radeon 6870 HD series card or higher, 8 GB RAM, and OpenGL 3 or greater (for Linux computers)....
Self-Driving Cars

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..