This course aims to help you to draw better statistical inferences from empirical research. First, we will discuss how to correctly interpret p-values, effect sizes, confidence intervals, Bayes Factors, and likelihood ratios, and how these statistics answer different questions you might be interested in. Then, you will learn how to design experiments where the false positive rate is controlled, and how to decide upon the sample size for your study, for example in order to achieve high statistical power. Subsequently, you will learn how to interpret evidence in the scientific literature given widespread publication bias, for example by learning about p-curve analysis. Finally, we will talk about how to do philosophy of science, theory construction, and cumulative science, including how to perform replication studies, why and how to pre-register your experiment, and how to share your results following Open Science principles.
Über diesen Kurs
Karriereergebnisse der Lernenden
14%
Kompetenzen, die Sie erwerben
Karriereergebnisse der Lernenden
14%
von

Eindhoven University of Technology
Eindhoven University of Technology (TU/e) is a young university, founded in 1956 by industry, local government and academia. Today, their spirit of collaboration is still at the heart of the university community. We foster an open culture where everyone feels free to exchange ideas and take initiatives.
Lehrplan - Was Sie in diesem Kurs lernen werden
Introduction + Frequentist Statistics
Likelihoods & Bayesian Statistics
Multiple Comparisons, Statistical Power, Pre-Registration
Effect Sizes
Bewertungen
Top-Bewertungen von IMPROVING YOUR STATISTICAL INFERENCES
Excellent explanations. Strong examples. Helpful exercises. Highly recommended for anyone who ever has to conduct inferential statistics or read anything that reports a p value or bayes factor.
Great course to dig a bit deeper into some very useful statistical concept. 4 starts as many of the contents are not "open" as the course preaches (see Microsoft Office documents or GPower).
Excellent course with a lot to learn. After 10 years in data analysis it provided me with great new insights and material to further improve my skills and understanding of data analysis
This is a top-notch course. The ground (especially pitfalls) is very well covered, and useful free tools are engaged (R, G*Power, prof's own spreadsheets for calculating effect size).
Häufig gestellte Fragen
Wann erhalte ich Zugang zu den Vorträgen und Aufgaben?
Was bekomme ich, wenn ich das Zertifikat erwerbe?
Is financial aid available?
In which languages is this course available?
Erhalte ich akademische Leistungspunkte für den Abschluss des Kurses?
Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..