Über diesen Kurs
30,537 recent views

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 34 Stunden zum Abschließen

Empfohlen: 8 weeks of study, 6-12 hours/week...

Englisch

Untertitel: Englisch

Kompetenzen, die Sie erwerben

Power SeriesComplex AnalysisMappingOptimizing Compiler

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 34 Stunden zum Abschließen

Empfohlen: 8 weeks of study, 6-12 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
5 Stunden zum Abschließen

Introduction to Complex Numbers

We’ll begin this module by briefly learning about the history of complex numbers: When and why were they invented? In particular, we’ll look at the rather surprising fact that the original need for complex numbers did not arise from the study of quadratic equations (such as solving the equation z^2+1 = 0), but rather from the study of cubic equations! Next we’ll cover some algebra and geometry in the complex plane to learn how to compute with and visualize complex numbers. To that end we’ll also learn about the polar representation of complex numbers, which will lend itself nicely to finding roots of complex numbers. We’ll finish this module by looking at some topology in the complex plane.

...
5 Videos (Gesamt 119 min), 5 Lektüren, 2 Quiz
5 Videos
Algebra and Geometry in the Complex Plane30m
Polar Representation of Complex Numbers32m
Roots of Complex Numbers14m
Topology in the Plane21m
5 Lektüren
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
1 praktische Übung
Module 1 Homework10m
Woche
2
3 Stunden zum Abschließen

Complex Functions and Iteration

Complex analysis is the study of functions that live in the complex plane, that is, functions that have complex arguments and complex outputs. The main goal of this module is to familiarize ourselves with such functions. Ultimately we’ll want to study their smoothness properties (that is, we’ll want to differentiate complex functions of complex variables), and we therefore need to understand sequences of complex numbers as well as limits in the complex plane. We’ll use quadratic polynomials as an example in the study of complex functions and take an excursion into the beautiful field of complex dynamics by looking at the iterates of certain quadratic polynomials. This allows us to learn about the basics of the construction of Julia sets of quadratic polynomials. You'll learn everything you need to know to create your own beautiful fractal images, if you so desire. We’ll finish this module by defining and looking at the Mandelbrot set and one of the biggest outstanding conjectures in the field of complex dynamics.

...
5 Videos (Gesamt 123 min), 5 Lektüren, 1 Quiz
5 Videos
Sequences and Limits of Complex Numbers30m
Iteration of Quadratic Polynomials, Julia Sets25m
How to Find Julia Sets20m
The Mandelbrot Set18m
5 Lektüren
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
1 praktische Übung
Module 2 Homework10m
Woche
3
5 Stunden zum Abschließen

Analytic Functions

When studying functions we are often interested in their local behavior, more specifically, in how functions change as their argument changes. This leads us to studying complex differentiation – a more powerful concept than that which we learned in calculus. We’ll begin this module by reviewing some facts from calculus and then learn about complex differentiation and the Cauchy-Riemann equations in order to meet the main players: analytic functions. These are functions that possess complex derivatives in lots of places; a fact, which endows them with some of the most beautiful properties mathematics has to offer. We’ll finish this module with the study of some functions that are complex differentiable, such as the complex exponential function and complex trigonometric functions. These functions agree with their well-known real-valued counterparts on the real axis!

...
5 Videos (Gesamt 135 min), 5 Lektüren, 2 Quiz
5 Videos
The Cauchy-Riemann Equations29m
The Complex Exponential Function24m
Complex Trigonometric Functions21m
First Properties of Analytic Functions25m
5 Lektüren
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
1 praktische Übung
Module 3 Homework10m
Woche
4
3 Stunden zum Abschließen

Conformal Mappings

We’ll begin this module by studying inverse functions of analytic functions such as the complex logarithm (inverse of the exponential) and complex roots (inverses of power) functions. In order to possess a (local) inverse, an analytic function needs to have a non-zero derivative, and we’ll discover the powerful fact that at any such place an analytic function preserves angles between curves and is therefore a conformal mapping! We'll spend two lectures talking about very special conformal mappings, namely Möbius transformations; these are some of the most fundamental mappings in geometric analysis. We'll finish this module with the famous and stunning Riemann mapping theorem. This theorem allows us to study arbitrary simply connected sub-regions of the complex plane by transporting geometry and complex analysis from the unit disk to those domains via conformal mappings, the existence of which is guaranteed via the Riemann Mapping Theorem.

...
5 Videos (Gesamt 113 min), 5 Lektüren, 1 Quiz
5 Videos
Conformal Mappings26m
Möbius transformations, Part 127m
Möbius Transformations, Part 217m
The Riemann Mapping Theorem15m
5 Lektüren
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
Lecture Slides10m
1 praktische Übung
Module 4 Homework10m
4.8
181 BewertungenChevron Right

50%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

25%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

Top-Bewertungen

von RKApr 6th 2018

The lectures were very easy to follow and the exercises fitted these lectures well. This course was not always very rigorous, but a great introduction to complex analysis nevertheless. Thank you!

von GCMar 21st 2017

With this wonderful complex analysis course under your belt you will be ready for the joys of Digital Signal Processing, solving Partial Differential Equations and Quantum Mechanics.

Dozent

Avatar

Dr. Petra Bonfert-Taylor

Former Professor of Mathematics at Wesleyan University / Professor of Engineering at Thayer School of Engineering at Dartmouth

Über Wesleyan University

At Wesleyan, distinguished scholar-teachers work closely with students, taking advantage of fluidity among disciplines to explore the world with a variety of tools. The university seeks to build a diverse, energetic community of students, faculty, and staff who think critically and creatively and who value independence of mind and generosity of spirit. ...

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie ein Zertifikat erwerben, erhalten Sie Zugriff auf alle Kursmaterialien, einschließlich bewerteter Aufgaben. Nach Abschluss des Kurses wird Ihr elektronisches Zertifikat zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..