Chevron Left
Zurück zu Machine Learning: Clustering & Retrieval

Bewertung und Feedback des Lernenden für Machine Learning: Clustering & Retrieval von University of Washington

2,301 Bewertungen

Über den Kurs

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....



24. Aug. 2016

excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.


16. Jan. 2017

Excellent course, well thought out lectures and problem sets. The programming assignments offer an appropriate amount of guidance that allows the students to work through the material on their own.

Filtern nach:

1 - 25 von 381 Bewertungen für Machine Learning: Clustering & Retrieval

von Ernie M

25. Sep. 2017

von James F

10. Aug. 2016

von Eugene K

10. Feb. 2017

von Veeraraghavan

2. März 2020

von André F d A F C

25. Juli 2016

von Dario D G

18. Jan. 2020

von Edward F

25. Juni 2017

von akashkr1498

8. Juli 2019

von Bruno K

25. Aug. 2016

von Pankaj K

8. Sep. 2017

von Tsz W K

14. Mai 2017

von Hamel H

7. Aug. 2016

von Ken C

4. Feb. 2017

von Phil B

13. Feb. 2018

von Sean S

3. Apr. 2018

von Leonardo D

25. Aug. 2019

von Luiz C

10. Juli 2018

von vacous

18. Apr. 2018

von Kim K L

4. Okt. 2016

von Uday A

12. Aug. 2017

von Diogo A

17. Juli 2020

von Ridhwanul H

17. Okt. 2017

von Abhilash

20. Feb. 2017

von Swati D

2. Mai 2018

von Jie S

27. Dez. 2019