Über diesen Kurs
102,254 kürzliche Aufrufe

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 18 Stunden zum Abschließen

Empfohlen: 4 weeks of study, 4-5 hours/week...

Englisch

Untertitel: Englisch

Kompetenzen, die Sie erwerben

Python ProgrammingPrincipal Component Analysis (PCA)Projection MatrixMathematical Optimization

100 % online

Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.

Flexible Fristen

Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.

Stufe „Mittel“

Ca. 18 Stunden zum Abschließen

Empfohlen: 4 weeks of study, 4-5 hours/week...

Englisch

Untertitel: Englisch

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1
5 Stunden zum Abschließen

Statistics of Datasets

8 Videos (Gesamt 27 min), 6 Lektüren, 4 Quiz
8 Videos
Welcome to module 141
Mean of a dataset4m
Variance of one-dimensional datasets4m
Variance of higher-dimensional datasets5m
Effect on the mean4m
Effect on the (co)variance3m
See you next module!27
6 Lektüren
About Imperial College & the team5m
How to be successful in this course5m
Grading policy5m
Additional readings & helpful references5m
Set up Jupyter notebook environment offline10m
Symmetric, positive definite matrices10m
3 praktische Übungen
Mean of datasets15m
Variance of 1D datasets15m
Covariance matrix of a two-dimensional dataset15m
Woche
2
4 Stunden zum Abschließen

Inner Products

8 Videos (Gesamt 36 min), 1 Lektüre, 5 Quiz
8 Videos
Dot product4m
Inner product: definition5m
Inner product: length of vectors7m
Inner product: distances between vectors3m
Inner product: angles and orthogonality5m
Inner products of functions and random variables (optional)7m
Heading for the next module!35
1 Lektüre
Basis vectors20m
4 praktische Übungen
Dot product10m
Properties of inner products20m
General inner products: lengths and distances20m
Angles between vectors using a non-standard inner product20m
Woche
3
4 Stunden zum Abschließen

Orthogonal Projections

6 Videos (Gesamt 25 min), 1 Lektüre, 3 Quiz
6 Videos
Projection onto 1D subspaces7m
Example: projection onto 1D subspaces3m
Projections onto higher-dimensional subspaces8m
Example: projection onto a 2D subspace3m
This was module 3!32
1 Lektüre
Full derivation of the projection20m
2 praktische Übungen
Projection onto a 1-dimensional subspace25m
Project 3D data onto a 2D subspace40m
Woche
4
5 Stunden zum Abschließen

Principal Component Analysis

10 Videos (Gesamt 52 min), 5 Lektüren, 2 Quiz
10 Videos
Problem setting and PCA objective7m
Finding the coordinates of the projected data5m
Reformulation of the objective10m
Finding the basis vectors that span the principal subspace7m
Steps of PCA4m
PCA in high dimensions5m
Other interpretations of PCA (optional)7m
Summary of this module42
This was the course on PCA56
5 Lektüren
Vector spaces20m
Orthogonal complements10m
Multivariate chain rule10m
Lagrange multipliers10m
Did you like the course? Let us know!10m
1 praktische Übung
Chain rule practice20m
4.0
238 BewertungenChevron Right

50%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

50%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs

Top-Bewertungen von Mathematics for Machine Learning: PCA

von JSJul 17th 2018

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

von JVMay 1st 2018

This course was definitely a bit more complex, not so much in assignments but in the core concepts handled, than the others in the specialisation. Overall, it was fun to do this course!

Dozent

Avatar

Marc Peter Deisenroth

Lecturer in Statistical Machine Learning
Department of Computing

Über Imperial College London

Imperial College London is a world top ten university with an international reputation for excellence in science, engineering, medicine and business. located in the heart of London. Imperial is a multidisciplinary space for education, research, translation and commercialisation, harnessing science and innovation to tackle global challenges. Imperial students benefit from a world-leading, inclusive educational experience, rooted in the College’s world-leading research. Our online courses are designed to promote interactivity, learning and the development of core skills, through the use of cutting-edge digital technology....

Über den Spezialisierung Mathematik für maschinelles Lernen

For a lot of higher level courses in Machine Learning and Data Science, you find you need to freshen up on the basics in mathematics - stuff you may have studied before in school or university, but which was taught in another context, or not very intuitively, such that you struggle to relate it to how it’s used in Computer Science. This specialization aims to bridge that gap, getting you up to speed in the underlying mathematics, building an intuitive understanding, and relating it to Machine Learning and Data Science. In the first course on Linear Algebra we look at what linear algebra is and how it relates to data. Then we look through what vectors and matrices are and how to work with them. The second course, Multivariate Calculus, builds on this to look at how to optimize fitting functions to get good fits to data. It starts from introductory calculus and then uses the matrices and vectors from the first course to look at data fitting. The third course, Dimensionality Reduction with Principal Component Analysis, uses the mathematics from the first two courses to compress high-dimensional data. This course is of intermediate difficulty and will require Python and numpy knowledge. At the end of this specialization you will have gained the prerequisite mathematical knowledge to continue your journey and take more advanced courses in machine learning....
Mathematik für maschinelles Lernen

Häufig gestellte Fragen

  • Sobald Sie sich für ein Zertifikat angemeldet haben, haben Sie Zugriff auf alle Videos, Quizspiele und Programmieraufgaben (falls zutreffend). Aufgaben, die von anderen Kursteilnehmern bewertet werden, können erst dann eingereicht und überprüft werden, wenn Ihr Unterricht begonnen hat. Wenn Sie sich den Kurs anschauen möchten, ohne ihn zu kaufen, können Sie womöglich auf bestimmte Aufgaben nicht zugreifen.

  • Wenn Sie sich für den Kurs anmelden, erhalten Sie Zugriff auf alle Kurse der Spezialisierung und Sie erhalten nach Abschluss aller Arbeiten ein Zertifikat. Ihr elektronisches Zertifikat wird zu Ihrer Seite „Errungenschaften“ hinzugefügt – von dort können Sie Ihr Zertifikat ausdrucken oder es zu Ihrem LinkedIn Profil hinzufügen. Wenn Sie nur lesen und den Inhalt des Kurses anzeigen möchten, können Sie kostenlos als Gast an dem Kurs teilnehmen.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..