Über diesen Kurs

19,635 kürzliche Aufrufe

Karriereergebnisse der Lernenden

20%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

18%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
100 % online
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexible Fristen
Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.
Stufe „Mittel“
Ca. 18 Stunden zum Abschließen
Englisch
Untertitel: Englisch

Karriereergebnisse der Lernenden

20%

nahm einen neuen Beruf nach Abschluss dieser Kurse auf

18%

ziehen Sie für Ihren Beruf greifbaren Nutzen aus diesem Kurs
Zertifikat zur Vorlage
Erhalten Sie nach Abschluss ein Zertifikat
100 % online
Beginnen Sie sofort und lernen Sie in Ihrem eigenen Tempo.
Flexible Fristen
Setzen Sie Fristen gemäß Ihrem Zeitplan zurück.
Stufe „Mittel“
Ca. 18 Stunden zum Abschließen
Englisch
Untertitel: Englisch

Dozent

von

New York University-Logo

New York University

Lehrplan - Was Sie in diesem Kurs lernen werden

Woche
1

Woche 1

5 Stunden zum Abschließen

Fundamentals of Supervised Learning in Finance

5 Stunden zum Abschließen
9 Videos (Gesamt 71 min), 4 Lektüren, 1 Quiz
9 Videos
Introduction to Fundamentals of Machine Learning in Finance4m
Support Vector Machines, Part 18m
Support Vector Machines, Part 27m
SVM. The Kernel Trick8m
Example: SVM for Prediction of Credit Spreads9m
Tree Methods. CART Trees9m
Tree Methods: Random Forests8m
Tree Methods: Boosting9m
4 Lektüren
A. Smola and B. Scholkopf, “A Tutorial on Support Vector Regression”, Statistics and Computing, vol. 14, pp. 199-229, 200415m
A. Geron, “Hands-On Machine Learning with Scikit-Learn and TensorFlow”, Chapters 6 & 730m
K. Murphy, “Machine Learning: A Probabilistic Perspective”, MIT Press, 2009, Chapter 16.415m
Jupyter Notebook FAQ10m
Woche
2

Woche 2

4 Stunden zum Abschließen

Core Concepts of Unsupervised Learning, PCA & Dimensionality Reduction

4 Stunden zum Abschließen
6 Videos (Gesamt 54 min), 3 Lektüren, 1 Quiz
6 Videos
PCA for Stock Returns, Part 14m
PCA for Stock Returns, Part 29m
Dimension Reduction with PCA9m
Dimension Reduction with tSNE11m
Dimension Reduction with Autoencoders9m
3 Lektüren
C. Bishop, “Pattern Recognition and Machine Learning”, Chapter 12.115m
A. Geron, “Hands-On ML”, Chapters 8 & 1530m
Jupyter Notebook FAQ10m
Woche
3

Woche 3

4 Stunden zum Abschließen

Data Visualization & Clustering

4 Stunden zum Abschließen
7 Videos (Gesamt 50 min), 3 Lektüren, 1 Quiz
7 Videos
UL. K-clustering8m
UL. K-means Neural Algorithm7m
UL. Hierarchical Clustering Algorithms10m
UL. Clustering and Estimation of Equity Correlation Matrix5m
UL. Minimum Spanning Trees, Kruskal Algorithm6m
UL. Probabilistic Clustering6m
3 Lektüren
C. Bishop, “Pattern Recognition and Machine Learning”, Clustering and EM: Chapter 930m
G. Bonanno et. al. “Networks of equities in financial markets”, The European Physical Journal B, vol. 38, issue 2, pp. 363-371 (2004)15m
Jupyter Notebook FAQ10m
Woche
4

Woche 4

5 Stunden zum Abschließen

Sequence Modeling and Reinforcement Learning

5 Stunden zum Abschließen
11 Videos (Gesamt 101 min), 3 Lektüren, 1 Quiz
11 Videos
Sequence Modeling10m
SM. Latent Variables for Sequences8m
SM. State-Space Models9m
SM. Hidden Markov Models9m
Neural Architecture for Sequential Data12m
RL. Introduction8m
RL. Core Ideas7m
Markov Decision Process and RL8m
RL. Bellman Equation6m
RL and Inverse Reinforcement Learning11m
3 Lektüren
C. Bishop, “Pattern Recognition and Machine Learning”, Chapter 1310m
S. Marsland, “Machine Learning: an Algorithmic Perspective” (Chapman & Hall 2009), Chapter 1315m
Jupyter Notebook FAQ10m

Bewertungen

Top-Bewertungen von FUNDAMENTALS OF MACHINE LEARNING IN FINANCE

Alle Bewertungen anzeigen

Über den Spezialisierung Machine Learning and Reinforcement Learning in Finance

The main goal of this specialization is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of machine learning (ML), with a particular focus on applications of ML to various practical problems in Finance. The specialization aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) mapping the problem on a general landscape of available ML methods, (2) choosing particular ML approach(es) that would be most appropriate for resolving the problem, and (3) successfully implementing a solution, and assessing its performance. The specialization is designed for three categories of students: · Practitioners working at financial institutions such as banks, asset management firms or hedge funds · Individuals interested in applications of ML for personal day trading · Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance. The modules can also be taken individually to improve relevant skills in a particular area of applications of ML to finance....
Machine Learning and Reinforcement Learning in Finance

Häufig gestellte Fragen

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

Haben Sie weitere Fragen? Besuchen Sie das Hilfe-Center für Teiln..