Zurück zu Calculus: Single Variable Part 1 - Functions

4.8

1,070 Bewertungen

•

275 Bewertungen

Calculus is one of the grandest achievements of human thought, explaining everything from planetary orbits to the optimal size of a city to the periodicity of a heartbeat. This brisk course covers the core ideas of single-variable Calculus with emphases on conceptual understanding and applications. The course is ideal for students beginning in the engineering, physical, and social sciences. Distinguishing features of the course include: 1) the introduction and use of Taylor series and approximations from the beginning; 2) a novel synthesis of discrete and continuous forms of Calculus; 3) an emphasis on the conceptual over the computational; and 4) a clear, dynamic, unified approach.
In this first part--part one of five--you will extend your understanding of Taylor series, review limits, learn the *why* behind l'Hopital's rule, and, most importantly, learn a new language for describing growth and decay of functions: the BIG O....

Jul 03, 2018

Very well structured for a refresher course. Thank you Professor Ghrist for your effort in putting this course together. A little additional outside research was required but well worth the effort.

Dec 16, 2016

Excellent class. Prof. Ghrist has a great teaching style, and his idea to use Taylor Series first is quite effective. Many functions I have shied away from in the past are now familiar to me.

Filtern nach:

von David A

•Oct 25, 2016

Professor G is awesome!

von Petr S

•Nov 16, 2016

I liked it a lot! Sometimes it was too difficult, but I rellay liked it!

von Carlos A

•May 03, 2017

It was great, the lectures were amazingly done, I loved all the colors and stuff made.

Clear and understandable.

Exercises not too hard, not too easy.

Our starting point is Euler's identity and Taylor Series, wich we take as a given. I didn't like it very much, but, overall, it accomplishes its goal.

von trshant

•Mar 25, 2016

i am finally beginning to understand calculus!

It is perfectly paced, and the core homework, while simple really makes you think about what you learned. And prepares you for tougher things, like the challenge homework.

von Kao C F

•Jan 26, 2018

perfect

von Xiao L

•Nov 15, 2017

This course is marvelous! I actually majored in Mathematics in university. But our Calculus course (it was called Mathematical Analysis, BTW) focused on every detail of the δ-ε proof of every theorem and formula, and I didn't get a chance to see the big picture. Now that this course is enlightening to me, I believe it would be useful for the majority. I think I'll take the whole series of five courses. Anybody know when the multiple variable series is coming?

A slight digression, though. Professor Ghrist talks a bit like Chandler Bing. With all the respect, it was funny sometimes. Fans of FRIENDS should understand what I'm talking about.

von Aleksander S

•Jan 05, 2016

Definitely one of the best courses on Coursera so far.

von Runze L

•Jan 29, 2017

Clear, a little challenging, interesting!

von Marat K

•Aug 03, 2016

Colorful and quite clear, but it might be a bit impractical (and I've been out of school for years now) in my case, so I'm just reviewing it to recall some notions and theories - and just for fun and a bit of mind-crunching :)

von Gadiel R

•Jan 10, 2017

Great lessons, challenging material, and good support.

von Hemant P

•Jul 01, 2017

This course really helped me push my limits(forgive the pun) with highschool math. It was challenging but not so much that it demotivated me! Moreover, I watched many lectures twice and thrice and tried replicating the examples demonstrated in each lecture. It really helped me drill in the fundamentals I needed. I can proudly say I know Taylor Series now!

von israel

•Feb 16, 2016

I love it.

von Thairo M T d S

•Jan 10, 2017

É incrível ter a experiência de poder realizar um curso tão rico e bem fundamentado de cálculo. Desde o começo, há uma ligação entre os assuntos, descobrindo não como ocorre em algumas aulas de cálculo que certos teoremas "saem da cartola" como mágica, e sim com a ajuda de algumas equações que, a partir do desenvolvimento algébrico delas, abrem o universo das séries de taylor. O que, sem dúvida, culmina na excelente demonstração do lim x->0 (sen x)/x e de L'Hopital.

Porém, é necessário, como o prof. G diz, já ter visto cálculo e ter uma certa maturidade. Recomendo fortemente um caderno ou um bloco de anotações, será bastante útil tanto como recordação ou como material para revisar. Excelente curso!

von Cameron C

•Jan 11, 2016

Excellent! Learned a ton! Lots of hard work, but great payoff.

von DY.Feng

•Sep 22, 2017

教授磁性的声音让人欲罢不能

von 宗彬

•May 21, 2018

很棒，尤其是对泰勒级数有了更深一层的理解。

von Yuji N

•Oct 28, 2016

I liked these fancy lecture videos in this course! It's really fun to learn and yet I can learn an advanced stuffs.

von 洪啸宇

•Jun 19, 2016

Q

von Sanket P

•Feb 09, 2016

Very good course. Helped me revise all the important concepts from Calculus.

von Jose Q

•May 31, 2018

Muy interesante y de bastante aplicación a otras ramas de la matemática.

von Xiaoming J

•May 22, 2017

Very good organized and I especially like the exercises in this course which is both challenging and doable.

von Wolfe G

•Feb 17, 2017

A little scary to start with Taylor series, but once mastered, it gives a depth of understanding not given by other MOOCs I have found on the subject.

von Mohamed K E

•Dec 17, 2015

amazing class even for an experienced student like myself , i had many gaps in my understanding of calculus that was filled by this class

von 田文星

•Jan 24, 2016

很好

von michael f

•May 18, 2017

I thoroughly enjoyed this course. Prof. Ghrist is an excellent teacher. The course was a tad bit harder than i has expected it to be, but nonetheless, i thoroughly enjoyed it and would recommend it to anyone who has an interest in Mathematics and calculus. It also cleared some of my concepts.

Coursera arbeitet mit erstklassigen Universitäten und Organisationen zusammen, um Online-Kurse anzubieten und dadurch universellen Zugriff auf die weltweit beste Ausbildung zu ermöglichen.